If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-45n^2+9=0
a = -45; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-45)·9
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{5}}{2*-45}=\frac{0-18\sqrt{5}}{-90} =-\frac{18\sqrt{5}}{-90} =-\frac{\sqrt{5}}{-5} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{5}}{2*-45}=\frac{0+18\sqrt{5}}{-90} =\frac{18\sqrt{5}}{-90} =\frac{\sqrt{5}}{-5} $
| (5x)(6x+6)=0 | | 11−2(8+3p)=7 | | 9x-(-)64=16 | | 3x+19=64 | | 50+20×0.35x=50+0.45x | | 5x4=2020-8 | | 2x+(3x+5)+(4x-5)=180 | | K-3/5=1/10;k7/10 | | 0.69x+24=1.29x | | 0.75x+3=1.25x | | 3(2×5)=2(x+3) | | 3(4x+2)=2(2x+11) | | −r/3=6 | | −2.6⋅6−2n−3+2=−57 | | -3(8k+5)=-3(9-k) | | 36+5x=-3x+12 | | 5g-8=46 | | -r/3=6 | | 3x2-2x=12 | | 39+x=42 | | 39+x=32 | | 10.49x=114 | | 10(1=3x)=20 | | 7.8w-19.88+6.1w=16.2w+19.45 | | -3-4n=21 | | 6x-135=4470 | | 2x-17=57 | | /a+5=−1 | | 3r-23=7 | | -17=-6x+13 | | 8c-28=6c+22 | | 3x-180+24=180 |